Quellenangaben zum Buch

1    Acosta-Rodriguez, V. A., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Importance of circadian timing for aging and longevity. Nat Commun 12, 2862 (2021). https://doi.org:10.1038/s41467-021-22922-6
2    Ahmad, F., Sachdeva, P., Sarkar, J. & Izhaar, R. Circadian dysfunction and Alzheimer's disease - An updated review. Aging Med (Milton) 6, 71-81 (2023). https://doi.org:10.1002/agm2.12221
3    Al-Naggar, R. A. & Anil, S. Artificial Light at Night and Cancer: Global Study. Asian Pac J Cancer Prev 17, 4661-4664 (2016). https://doi.org:10.22034/apjcp.2016.17.10.4661
4    Amann, J. et al. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak 20, 310 (2020). https://doi.org:10.1186/s12911-020-01332-6
5    Anafi, R. C., Francey, L. J., Hogenesch, J. B. & Kim, J. CYCLOPS reveals human transcriptional rhythms in health and disease. Proc Natl Acad Sci U S A 114, 5312-5317 (2017). https://doi.org:10.1073/pnas.1619320114
6    Anderson, J. A. E., Campbell, K. L., Amer, T., Grady, C. L. & Hasher, L. Timing is everything: Age differences in the cognitive control network are modulated by time of day. Psychol Aging 29, 648-657 (2014). https://doi.org:10.1037/a0037243
7    Andrews, J. L. et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci U S A 107, 19090-19095 (2010). https://doi.org:10.1073/pnas.1014523107
8    Astaburuaga, R., Basti, A., Li, Y., Herms, D. & Relógio, A. Circadian regulation of physiology: Relevance for space medicine. Reach 14-15 (2019). https://doi.org:10.1016/j.reach.2019.100029
9    Axelrod, D. E. Chronotherapy of Early Colon Cancer: Advantage of Morning Dose Schedules. Cancer Inform 21, 11769351211067697 (2022). https://doi.org:10.1177/11769351211067697
10    Ayyar, V. S. & Sukumaran, S. Circadian rhythms: influence on physiology, pharmacology, and therapeutic interventions. J Pharmacokinet Pharmacodyn 48, 321-338 (2021). https://doi.org:10.1007/s10928-021-09751-2
11    Badiyan, S. N. et al. Impact of time of day on outcomes after stereotactic radiosurgery for non-small cell lung cancer brain metastases. Cancer 119, 3563-3569 (2013). https://doi.org:10.1002/cncr.28237
12    Bailey, S. M. et al. Ad Astra - telomeres in space! Int J Radiat Biol 98, 395-403 (2022). https://doi.org:10.1080/09553002.2021.1956010
13    Barger, L. K. et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol 13, 904-912 (2014). https://doi.org:10.1016/S1474-4422(14)70122-X
14    Basti, A. et al. The Core-Clock Gene NR1D1 Impacts Cell Motility In Vitro and Invasiveness in A Zebrafish Xenograft Colon Cancer Model. Cancers (Basel) 12 (2020). https://doi.org:10.3390/cancers12040853
15    Basti, A. et al. Core-Clock Genes Regulate Proliferation and Invasion via a Reciprocal Interplay with MACC1 in Colorectal Cancer Cells. Cancers (Basel) 14 (2022). https://doi.org:10.3390/cancers14143458
16    Basti, A. et al. Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day. BMJ Open Sport Exerc Med 7, e000876 (2021). https://doi.org:10.1136/bmjsem-2020-000876
17    Beker, M. C. et al. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep 9, 19082 (2019). https://doi.org:10.1038/s41598-019-55663-0
18    Bellet, M. M. et al. The Circadian Protein PER1 Modulates the Cellular Response to Anticancer Treatments. Int J Mol Sci 22 (2021). https://doi.org:10.3390/ijms22062974
19    Benitah, S. A. & Welz, P. S. Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell 26, 817-831 (2020). https://doi.org:10.1016/j.stem.2020.05.002
20    Bhoi, J. D., Goel, M., Ribelayga, C. P. & Mangel, S. C. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 94, 101119 (2023). https://doi.org:10.1016/j.preteyeres.2022.101119
21    Biolo, G., Heer, M., Narici, M. & Strollo, F. Microgravity as a model of ageing. Curr Opin Clin Nutr Metab Care 6, 31-40 (2003). https://doi.org:10.1097/00075197-200301000-00006
22    Bjarnason, G. A. et al. Comparison of toxicity associated with early morning versus late afternoon radiotherapy in patients with head-and-neck cancer: a prospective randomized trial of the National Cancer Institute of Canada Clinical Trials Group (HN3). Int J Radiat Oncol Biol Phys 73, 166-172 (2009). https://doi.org:10.1016/j.ijrobp.2008.07.009
23    Blasiak, J., Sobczuk, P., Pawlowska, E. & Kaarniranta, K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res Rev 81, 101735 (2022). https://doi.org:10.1016/j.arr.2022.101735
24    Bolitho, S. J. et al. Disturbances in melatonin secretion and circadian sleep-wake regulation in Parkinson disease. Sleep Med 15, 342-347 (2014). https://doi.org:10.1016/j.sleep.2013.10.016
25    Bordet, R. et al. Study of circadian melatonin secretion pattern at different stages of Parkinson's disease. Clin Neuropharmacol 26, 65-72 (2003). https://doi.org:10.1097/00002826-200303000-00005
26    Bouchahda, M. et al. Multicentre, interventional, single-arm study protocol of telemonitored circadian rhythms and patient-reported outcomes for improving mFOLFIRINOX safety in patients with pancreatic cancer (MultiDom, NCT04263948). BMJ Open 13, e069973 (2023). https://doi.org:10.1136/bmjopen-2022-069973
27    Bozejko, M., Tarski, I. & Malodobra-Mazur, M. Outdoor artificial light at night and human health: A review of epidemiological studies. Environ Res 218, 115049 (2023). https://doi.org:10.1016/j.envres.2022.115049
28    Breen, D. P. et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol 71, 589-595 (2014). https://doi.org:10.1001/jamaneurol.2014.65
29    Brooks, C. et al. Variations in rest-activity rhythm are associated with clinically measured disease severity in Parkinson's disease. Chronobiol Int 37, 699-711 (2020). https://doi.org:10.1080/07420528.2020.1715998
30    Buijs, R. M., Soto Tinoco, E. C., Hurtado Alvarado, G. & Escobar, C. The circadian system: From clocks to physiology. Handb Clin Neurol 179, 233-247 (2021). https://doi.org:10.1016/B978-0-12-819975-6.00013-3
31    Buysse, D. J., Reynolds, C. F., 3rd, Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28, 193-213 (1989). https://doi.org:10.1016/0165-1781(89)90047-4
32    Cacace, R., Sleegers, K. & Van Broeckhoven, C. Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimers Dement 12, 733-748 (2016). https://doi.org:10.1016/j.jalz.2016.01.012
33    Cai, Y., Liu, S., Sothern, R. B., Xu, S. & Chan, P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson's disease. Eur J Neurol 17, 550-554 (2010). https://doi.org:10.1111/j.1468-1331.2009.02848.x
34    Cai, Y., Liu, Y., Wu, Z., Wang, J. & Zhang, X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 15 (2023). https://doi.org:10.3390/nu15122743
35    Cain, S. W. et al. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J Biol Rhythms 25, 288-296 (2010). https://doi.org:10.1177/0748730410374943
36    Canal, P. et al. Chronopharmacokinetics of doxorubicin in patients with breast cancer. Eur J Clin Pharmacol 40, 287-291 (1991). https://doi.org:10.1007/BF00315211
37    Carpenter, J. S. et al. MsFLASH analysis of diurnal salivary cortisol and palpitations in peri- and postmenopausal women. Menopause 29, 144-150 (2021). https://doi.org:10.1097/GME.0000000000001897
38    Carter, B., Justin, H. S., Gulick, D. & Gamsby, J. J. The Molecular Clock and Neurodegenerative Disease: A Stressful Time. Front Mol Biosci 8, 644747 (2021). https://doi.org:10.3389/fmolb.2021.644747
39    CDC. Sleep, <https://www.cdc.gov/sleep/about/index.html> (2024).
40    Cederroth, C. R. et al. Medicine in the Fourth Dimension. Cell Metab 30, 238-250 (2019). https://doi.org:10.1016/j.cmet.2019.06.019
41    Chandramouli, M., Basavanna, V. & Ningaiah, S. A scenario of unhealthy life cycle: The role of circadian rhythms in health. Aging Med (Milton) 7, 231-238 (2024). https://doi.org:10.1002/agm2.12301
42    Chen, Q., Peng, X. D., Huang, C. Q., Hu, X. Y. & Zhang, X. M. Association between ARNTL (BMAL1) rs2278749 polymorphism T >C and susceptibility to Alzheimer disease in a Chinese population. Genet Mol Res 14, 18515-18522 (2015). https://doi.org:10.4238/2015.December.23.39
43    Clemmensen, K. K. et al. The circadian schedule for childhood acute lymphoblastic leukemia maintenance therapy does not influence event-free survival in the NOPHO ALL92 protocol. Pediatr Blood Cancer 61, 653-658 (2014). https://doi.org:10.1002/pbc.24867
44    Cockrell, C. & Axelrod, D. E. Combination Chemotherapy of Multidrug-resistant Early-stage Colon Cancer: Determining Optimal Dose Schedules by High-performance Computer Simulation. Cancer Res Commun 3, 21-30 (2023). https://doi.org:10.1158/2767-9764.crc-22-0271
45    Costello, H. M. & Gumz, M. L. Circadian Rhythm, Clock Genes, and Hypertension: Recent Advances in Hypertension. Hypertension 78, 1185-1196 (2021). https://doi.org:10.1161/HYPERTENSIONAHA.121.14519
46    Coudert, B. et al. A randomized multicenter study of optimal circadian time of vinorelbine combined with chronomodulated 5-fluorouracil in pretreated metastatic breast cancer patients: EORTC trial 05971. Chronobiol Int 25, 680-696 (2008). https://doi.org:10.1080/07420520802384036
47    Czeisler, C. A., Chiasera, A. J. & Duffy, J. F. Research on sleep, circadian rhythms and aging: applications to manned spaceflight. Exp Gerontol 26, 217-232 (1991). https://doi.org:10.1016/0531-5565(91)90014-d
48    Danilenko, K. V., Verevkin, E. G., Antyufeev, V. S., Wirz-Justice, A. & Cajochen, C. The hockey-stick method to estimate evening dim light melatonin onset (DLMO) in humans. Chronobiol Int 31, 349-355 (2014). https://doi.org:10.3109/07420528.2013.855226
49    Delgado-Lara, D. L. et al. Effect of melatonin administration on the PER1 and BMAL1 clock genes in patients with Parkinson's disease. Biomed Pharmacother 129, 110485 (2020). https://doi.org:10.1016/j.biopha.2020.110485
50    Dijk, D. J. & Duffy, J. F. Novel Approaches for Assessing Circadian Rhythmicity in Humans: A Review. J Biol Rhythms 35, 421-438 (2020). https://doi.org:10.1177/0748730420940483
51    Dijk, D. J. et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 281, R1647-1664 (2001). https://doi.org:10.1152/ajpregu.2001.281.5.R1647
52    Ding, H. et al. Decreased expression of Bmal2 in patients with Parkinson's disease. Neurosci Lett 499, 186-188 (2011). https://doi.org:10.1016/j.neulet.2011.05.058
53    Djamshidian, A. et al. Salivary cortisol levels in Parkinson's disease and its correlation to risk behaviour. J Neurol Neurosurg Psychiatry 82, 1107-1111 (2011). https://doi.org:10.1136/jnnp.2011.245746
54    Dorsey, A., de Lecea, L. & Jennings, K. J. Neurobiological and Hormonal Mechanisms Regulating Women's Sleep. Front Neurosci 14, 625397 (2020). https://doi.org:10.3389/fnins.2020.625397
55    Dose, B., Yalcin, M., Dries, S. P. M. & Relogio, A. TimeTeller for timing health: The potential of circadian medicine to improve performance, prevent disease and optimize treatment. Front Digit Health 5, 1157654 (2023). https://doi.org:10.3389/fdgth.2023.1157654
56    Dowling, G. A. et al. Melatonin for sleep disturbances in Parkinson's disease. Sleep Med 6, 459-466 (2005). https://doi.org:10.1016/j.sleep.2005.04.004
57    Duffy, J. F. et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci U S A 108 Suppl 3, 15602-15608 (2011). https://doi.org:10.1073/pnas.1010666108
58    Duffy, J. F., Zitting, K. M. & Chinoy, E. D. Aging and Circadian Rhythms. Sleep Med Clin 10, 423-434 (2015). https://doi.org:10.1016/j.jsmc.2015.08.002
59    Durgan, D. J. et al. The intrinsic circadian clock within the cardiomyocyte. Am J Physiol Heart Circ Physiol 289, H1530-1541 (2005). https://doi.org:10.1152/ajpheart.00406.2005
60    El Jamal, N., Lordan, R., Teegarden, S. L., Grosser, T. & FitzGerald, G. The Circadian Biology of Heart Failure. Circ Res 132, 223-237 (2023). https://doi.org:10.1161/CIRCRESAHA.122.321369
61    El-Athman, R. et al. The Ink4a/Arf locus operates as a regulator of the circadian clock modulating RAS activity. PLoS Biol 15, e2002940 (2017). https://doi.org:10.1371/journal.pbio.2002940
62    Facer-Childs, E. & Brandstaetter, R. The impact of circadian phenotype and time since awakening on diurnal performance in athletes. Curr Biol 25, 518-522 (2015). https://doi.org:10.1016/j.cub.2014.12.036
63    Fagiani, F. et al. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther 7, 41 (2022). https://doi.org:10.1038/s41392-022-00899-y
64    Fan, R. et al. Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell 21, e13704 (2022). https://doi.org:10.1111/acel.13704
65    Fertl, E., Auff, E., Doppelbauer, A. & Waldhauser, F. Circadian secretion pattern of melatonin in Parkinson's disease. J Neural Transm Park Dis Dement Sect 3, 41-47 (1991). https://doi.org:10.1007/BF02251135
66    Fifel, K. & Videnovic, A. Light Therapy in Parkinson's Disease: Towards Mechanism-Based Protocols. Trends Neurosci 41, 252-254 (2018). https://doi.org:10.1016/j.tins.2018.03.002
67    Fifel, K. & Videnovic, A. Chronotherapies for Parkinson's disease. Prog Neurobiol 174, 16-27 (2019). https://doi.org:10.1016/j.pneurobio.2019.01.002
68    Fifel, K. & Videnovic, A. Circadian alterations in patients with neurodegenerative diseases: Neuropathological basis of underlying network mechanisms. Neurobiol Dis 144, 105029 (2020). https://doi.org:10.1016/j.nbd.2020.105029
69    Fitts, R. H. et al. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J Physiol 588, 3567-3592 (2010). https://doi.org:10.1113/jphysiol.2010.188508
70    Franzago, M., Alessandrelli, E., Notarangelo, S., Stuppia, L. & Vitacolonna, E. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. Int J Mol Sci 24 (2023). https://doi.org:10.3390/ijms24032571
71    Fujimura, A. & Ushijima, K. Understanding the role of chronopharmacology for drug optimization: what do we know? Expert Rev Clin Pharmacol 16, 655-668 (2023). https://doi.org:10.1080/17512433.2023.2233438
72    Gabriel, B. M. & Zierath, J. R. Circadian rhythms and exercise - re-setting the clock in metabolic disease. Nat Rev Endocrinol 15, 197-206 (2019). https://doi.org:10.1038/s41574-018-0150-x
73    Gamble, K. L., Berry, R., Frank, S. J. & Young, M. E. Circadian clock control of endocrine factors. Nat Rev Endocrinol 10, 466-475 (2014). https://doi.org:10.1038/nrendo.2014.78
74    Garrett-Bakelman, F. E. et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 364 (2019). https://doi.org:10.1126/science.aau8650
75    Gaspar, L. S. et al. The importance of determining circadian parameters in pharmacological studies. Br J Pharmacol 176, 2827-2847 (2019). https://doi.org:10.1111/bph.14712
76    Gentry, N. W., Ashbrook, L. H., Fu, Y. H. & Ptacek, L. J. Human circadian variations. J Clin Invest 131 (2021). https://doi.org:10.1172/JCI148282
77    Ghotbi, N. et al. The microMCTQ: An Ultra-Short Version of the Munich ChronoType Questionnaire. J Biol Rhythms 35, 98-110 (2020). https://doi.org:10.1177/0748730419886986
78    Giacchetti, S. et al. Phase III trial comparing 4-day chronomodulated therapy versus 2-day conventional delivery of fluorouracil, leucovorin, and oxaliplatin as first-line chemotherapy of metastatic colorectal cancer: the European Organisation for Research and Treatment of Cancer Chronotherapy Group. J Clin Oncol 24, 3562-3569 (2006). https://doi.org:10.1200/JCO.2006.06.1440
79    Giacchetti, S. et al. Sex moderates circadian chemotherapy effects on survival of patients with metastatic colorectal cancer: a meta-analysis. Ann Oncol 23, 3110-3116 (2012). https://doi.org:10.1093/annonc/mds148
80    Gietka-Czernel, M. The thyroid gland in postmenopausal women: physiology and diseases. Prz Menopauzalny 16, 33-37 (2017). https://doi.org:10.5114/pm.2017.68588
81    Goity, A. et al. Transcriptional rewiring of an evolutionarily conserved circadian clock. EMBO J 43, 2015-2034 (2024). https://doi.org:10.1038/s44318-024-00088-3
82    Goncalves, C., Moreira, H. & Santos, R. Systematic review of mediterranean diet interventions in menopausal women. AIMS Public Health 11, 110-129 (2024). https://doi.org:10.3934/publichealth.2024005
83    Goswami, N. et al. Falls Risk, Circadian Rhythms and Melatonin: Current Perspectives. Clin Interv Aging 15, 2165-2174 (2020). https://doi.org:10.2147/CIA.S283342
84    Gottfried, S. Women: Diet, Cardiometabolic Health, and Functional Medicine. Phys Med Rehabil Clin N Am 33, 621-645 (2022). https://doi.org:10.1016/j.pmr.2022.04.005
85    group, I. M. V. Carcinogenicity of night shift work. Lancet Oncol 20, 1058-1059 (2019). https://doi.org:10.1016/S1470-2045(19)30455-3
86    Gu, Z. et al. Association of ARNTL and PER1 genes with Parkinson's disease: a case-control study of Han Chinese. Sci Rep 5, 15891 (2015). https://doi.org:10.1038/srep15891
87    Guo, J. H. et al. Keeping the right time in space: importance of circadian clock and sleep for physiology and performance of astronauts. Mil Med Res 1, 23 (2014). https://doi.org:10.1186/2054-9369-1-23
88    Gursoy, A. Y., Kiseli, M. & Caglar, G. S. Melatonin in aging women. Climacteric 18, 790-796 (2015). https://doi.org:10.3109/13697137.2015.1052393
89    Guymer, R. H. & Campbell, T. G. Age-related macular degeneration. Lancet 401, 1459-1472 (2023). https://doi.org:10.1016/S0140-6736(22)02609-5
90    Hachul, H., Hachul de Campos, B., Lucena, L. & Tufik, S. Sleep During Menopause. Sleep Med Clin 18, 423-433 (2023). https://doi.org:10.1016/j.jsmc.2023.06.004
91    Haghani, M. et al. Blue Light and Digital Screens Revisited: A New Look at Blue Light from the Vision Quality, Circadian Rhythm and Cognitive Functions Perspective. J Biomed Phys Eng 14, 213-228 (2024). https://doi.org:10.31661/jbpe.v0i0.2106-1355
92    Hartmann, A., Veldhuis, J. D., Deuschle, M., Standhardt, H. & Heuser, I. Twenty-four hour cortisol release profiles in patients with Alzheimer's and Parkinson's disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging 18, 285-289 (1997). https://doi.org:10.1016/s0197-4580(97)80309-0
93    Haspel, J. A. et al. Perfect timing: circadian rhythms, sleep, and immunity - an NIH workshop summary. JCI Insight 5 (2020). https://doi.org:10.1172/jci.insight.131487
94    Hesse, J. et al. An Optimal Time for Treatment-Predicting Circadian Time by Machine Learning and Mathematical Modelling. Cancers (Basel) 12, 3103 (2020). https://doi.org:10.3390/cancers12113103
95    Hesse, J., Martinelli, J., Aboumanify, O., Ballesta, A. & Relogio, A. A mathematical model of the circadian clock and drug pharmacology to optimize irinotecan administration timing in colorectal cancer. Comput Struct Biotechnol J 19, 5170-5183 (2021). https://doi.org:10.1016/j.csbj.2021.08.051
96    Hesse, J., Muller, T. & Relogio, A. An integrative mathematical model for timing treatment toxicity and Zeitgeber impact in colorectal cancer cells. NPJ Syst Biol Appl 9, 27 (2023). https://doi.org:10.1038/s41540-023-00287-4
97    Hesse, J., Nelson, N. & Relógio, A. Shaping the future of precision oncology: Integrating circadian medicine and mathematical models for personalized cancer treatment. Current Opinion in Systems Biology 37, 100506 (2024). https://doi.org:10.1016/j.coisb.2024.100506
98    Hirai, T. Circadian clock and bone biology. Journal of Oral Biosciences 59, 179-183 (2017). https://doi.org:10.1016/j.job.2017.06.001
99    Hood, S. & Amir, S. Neurodegeneration and the Circadian Clock. Front Aging Neurosci 9, 170 (2017). https://doi.org:10.3389/fnagi.2017.00170
100    Hood, S. & Amir, S. The aging clock: circadian rhythms and later life. J Clin Invest 127, 437-446 (2017). https://doi.org:10.1172/JCI90328
101    Hoyt, K. R. & Obrietan, K. Circadian clocks, cognition, and Alzheimer's disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener 17, 35 (2022). https://doi.org:10.1186/s13024-022-00537-9
102    Hsu, F. M. et al. Differences in toxicity and outcome associated with circadian variations between patients undergoing daytime and evening radiotherapy for prostate adenocarcinoma. Chronobiol Int 33, 210-219 (2016). https://doi.org:10.3109/07420528.2015.1130049
103    Huang, Q., Komarzynski, S., Bolborea, M., Finkenstadt, B. & Levi, F. A. Telemonitored Human Circadian Temperature Dynamics During Daily Routine. Front Physiol 12, 659973 (2021). https://doi.org:10.3389/fphys.2021.659973
104    Hughey, J. J. & Butte, A. J. Differential Phasing between Circadian Clocks in the Brain and Peripheral Organs in Humans. J Biol Rhythms 31, 588-597 (2016). https://doi.org:10.1177/0748730416668049
105    Innominato, P. F. et al. Efficacy and safety of chronomodulated irinotecan, oxaliplatin, 5-fluorouracil and leucovorin combination as first- or second-line treatment against metastatic colorectal cancer: Results from the International EORTC 05011 Trial. Int J Cancer 148, 2512-2521 (2021). https://doi.org:10.1002/ijc.33422
106    Institute of Medicine Committee on Sleep, M. & Research. in Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem  The National Academies Collection: Reports funded by National Institutes of Health (eds H. R. Colten & B. M. Altevogt)  (National Academies Press (US), National Academy of Sciences., 2006).
107    Institute of Medicine Committee on the Longitudinal Study of Astronaut, H. in Review of NASA's Longitudinal Study of Astronaut Health   (eds D. E. Longnecker, F. J. Manning, & M. H. Worth, Jr.)  (National Academies Press (US)
Copyright 2004 by the National Academy of Sciences. All rights reserved., 2004).
108    Jeyaraj, D. et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483, 96-99 (2012). https://doi.org:10.1038/nature10852
109    Johnson, K. et al. Genetic Variants Predict Optimal Timing of Radiotherapy to Reduce Side-effects in Breast Cancer Patients. Clin Oncol (R Coll Radiol) 31, 9-16 (2019). https://doi.org:10.1016/j.clon.2018.10.001
110    Johnstone, D. M., Moro, C., Stone, J., Benabid, A. L. & Mitrofanis, J. Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer's and Parkinson's Disease. Front Neurosci 9, 500 (2015). https://doi.org:10.3389/fnins.2015.00500
111    Joye, D. A. M. & Evans, J. A. Sex differences in daily timekeeping and circadian clock circuits. Semin Cell Dev Biol 126, 45-55 (2022). https://doi.org:10.1016/j.semcdb.2021.04.026
112    Kabadayi Demir, C., Bayram, S., Kose, B., Koseler Beyaz, E. & Yesil, E. Sleep, Mood, and Nutrition Patterns of Postmenopausal Women Diagnosed with Major Depressive Disorder by Menopause Periods. Life (Basel) 14 (2024). https://doi.org:10.3390/life14060775
113    Kabolizadeh, P. et al. The Effect of Treatment Time on Outcome in Non-small Cell Lung Cancer Brain Metastases Treated with Stereotactic Radiosurgery. International Journal of Radiation Oncology*Biology*Physics 81, S301-S301 (2011). https://doi.org:10.1016/j.ijrobp.2011.06.1784
114    Kantermann, T. & Eastman, C. I. Circadian phase, circadian period and chronotype are reproducible over months. Chronobiol Int 35, 280-288 (2018). https://doi.org:10.1080/07420528.2017.1400979
115    Karaboue, A. et al. Time-Dependent Efficacy of Checkpoint Inhibitor Nivolumab: Results from a Pilot Study in Patients with Metastatic Non-Small-Cell Lung Cancer. Cancers (Basel) 14 (2022). https://doi.org:10.3390/cancers14040896
116    Khan, S. J., Kapoor, E., Faubion, S. S. & Kling, J. M. Vasomotor Symptoms During Menopause: A Practical Guide on Current Treatments and Future Perspectives. Int J Womens Health 15, 273-287 (2023). https://doi.org:10.2147/IJWH.S365808
117    Kim, D. W., Byun, J. M., Lee, J. O., Kim, J. K. & Koh, Y. Chemotherapy delivery time affects treatment outcomes of female patients with diffuse large B cell lymphoma. JCI Insight 8 (2023). https://doi.org:10.1172/jci.insight.164767
118    Kim, D. W., Zavala, E. & Kim, J. K. Wearable technology and systems modeling for personalized chronotherapy. Current Opinion in Systems Biology 21, 9-15 (2020). https://doi.org:10.1016/j.coisb.2020.07.007
119    Kim, H. K., Radak, Z., Takahashi, M., Inami, T. & Shibata, S. Chrono-exercise: Time-of-day-dependent physiological responses to exercise. Sports Med Health Sci 5, 50-58 (2023). https://doi.org:10.1016/j.smhs.2022.11.003
120    Kinouchi, K. & Sassone-Corsi, P. Metabolic rivalry: circadian homeostasis and tumorigenesis. Nat Rev Cancer 20, 645-661 (2020). https://doi.org:10.1038/s41568-020-0291-9
121    Kondratova, A. A., Dubrovsky, Y. V., Antoch, M. P. & Kondratov, R. V. Circadian clock proteins control adaptation to novel environment and memory formation. Aging (Albany NY) 2, 285-297 (2010). https://doi.org:10.18632/aging.100142
122    Kondratova, A. A. & Kondratov, R. V. The circadian clock and pathology of the ageing brain. Nat Rev Neurosci 13, 325-335 (2012). https://doi.org:10.1038/nrn3208
123    Kusov, P. A., Kotelevtsev, Y. V. & Drachev, V. P. Cortisol Monitoring Devices toward Implementation for Clinically Relevant Biosensing In Vivo. Molecules 28 (2023). https://doi.org:10.3390/molecules28052353
124    Laje, R., Agostino, P. V. & Golombek, D. A. The Times of Our Lives: Interaction Among Different Biological Periodicities. Front Integr Neurosci 12, 10 (2018). https://doi.org:10.3389/fnint.2018.00010
125    Lane, J. M. et al. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet 24, 4-20 (2023). https://doi.org:10.1038/s41576-022-00519-z
126    Latimer, M. N. & Young, M. E. Circadian Governance of Cardiac Growth. Cells 11 (2022). https://doi.org:10.3390/cells11091494
127    Lee, Y., Field, J. M. & Sehgal, A. Circadian Rhythms, Disease and Chronotherapy. J Biol Rhythms 36, 503-531 (2021). https://doi.org:10.1177/07487304211044301
128    Lee, Y. et al. Time-of-day specificity of anticancer drugs may be mediated by circadian regulation of the cell cycle. Sci Adv 7 (2021). https://doi.org:10.1126/sciadv.abd2645
129    Lehmann, R. et al. Assembly of a comprehensive regulatory network for the mammalian circadian clock: a bioinformatics approach. PLoS One 10, e0126283 (2015). https://doi.org:10.1371/journal.pone.0126283
130    Leng, Y. et al. Association of Circadian Abnormalities in Older Adults With an Increased Risk of Developing Parkinson Disease. JAMA Neurol 77, 1270-1278 (2020). https://doi.org:10.1001/jamaneurol.2020.1623
131    Levi, F. et al. Chemotherapy of advanced ovarian cancer with 4'-O-tetrahydropyranyl doxorubicin and cisplatin: a randomized phase II trial with an evaluation of circadian timing and dose-intensity. J Clin Oncol 8, 705-714 (1990). https://doi.org:10.1200/JCO.1990.8.4.705
132    Levi, F. et al. Pharmacokinetics of Irinotecan, Oxaliplatin and 5-Fluorouracil During Hepatic Artery Chronomodulated Infusion: A Translational European OPTILIV Study. Clin Pharmacokinet 56, 165-177 (2017). https://doi.org:10.1007/s40262-016-0431-2
133    Levi, F., Okyar, A., Dulong, S., Innominato, P. F. & Clairambault, J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol 50, 377-421 (2010). https://doi.org:10.1146/annurev.pharmtox.48.113006.094626
134    Levi, F., Zidani, R. & Misset, J. L. Randomised multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. International Organization for Cancer Chronotherapy. Lancet 350, 681-686 (1997). https://doi.org:10.1016/s0140-6736(97)03358-8
135    Levi, F. A., Okyar, A., Hadadi, E., Innominato, P. F. & Ballesta, A. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu Rev Pharmacol Toxicol 64, 89-114 (2024). https://doi.org:10.1146/annurev-pharmtox-051920-095416
136    Levi, F. A. et al. Chronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: a randomized multi-institutional trial. J Natl Cancer Inst 86, 1608-1617 (1994). https://doi.org:10.1093/jnci/86.21.1608
137    Lewis, P., Korf, H. W., Kuffer, L., Gross, J. V. & Erren, T. C. Exercise time cues (zeitgebers) for human circadian systems can foster health and improve performance: a systematic review. BMJ Open Sport Exerc Med 4, e000443 (2018). https://doi.org:10.1136/bmjsem-2018-000443
138    Lewis, P., Oster, H., Korf, H. W., Foster, R. G. & Erren, T. C. Food as a circadian time cue - evidence from human studies. Nat Rev Endocrinol 16, 213-223 (2020). https://doi.org:10.1038/s41574-020-0318-z
139    Li, L. et al. Elevated Plasma Melatonin Levels Are Correlated With the Non-motor Symptoms in Parkinson's Disease: A Cross-Sectional Study. Front Neurosci 14, 505 (2020). https://doi.org:10.3389/fnins.2020.00505
140    Li, S., Wang, Y., Wang, F., Hu, L. F. & Liu, C. F. A New Perspective for Parkinson's Disease: Circadian Rhythm. Neurosci Bull 33, 62-72 (2017). https://doi.org:10.1007/s12264-016-0089-7
141    Li, Y., Tan, Y. & Zhao, Z. Impacts of aging on circadian rhythm and related sleep disorders. Biosystems 236, 105111 (2024). https://doi.org:10.1016/j.biosystems.2023.105111
142    Li, Z., Huang, L., Luo, Y., Yu, B. & Tian, G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 81, 1626-1635 (2023). https://doi.org:10.1093/nutrit/nuad026
143    Lialy, H. E., Mohamed, M. A., AbdAllatif, L. A., Khalid, M. & Elhelbawy, A. Effects of different physiotherapy modalities on insomnia and depression in perimenopausal, menopausal, and post-menopausal women: a systematic review. BMC Womens Health 23, 363 (2023). https://doi.org:10.1186/s12905-023-02515-9
144    Lin, H. X. et al. Randomized study of sinusoidal chronomodulated versus flat intermittent induction chemotherapy with cisplatin and 5-fluorouracil followed by traditional radiotherapy for locoregionally advanced nasopharyngeal carcinoma. Chin J Cancer 32, 502-511 (2013). https://doi.org:10.5732/cjc.013.10004
145    Lin, L. Y., Tam, K. W. & Huang, T. W. Effect of bright light therapy on cancer-related fatigue and related symptoms: A systematic review and meta-analysis of randomized controlled trials. J Psychosom Res 174, 111501 (2023). https://doi.org:10.1016/j.jpsychores.2023.111501
146    Logan, R. W. & McClung, C. A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci 20, 49-65 (2019). https://doi.org:10.1038/s41583-018-0088-y
147    Lok, R., Qian, J. & Chellappa, S. L. Sex differences in sleep, circadian rhythms, and metabolism: Implications for precision medicine. Sleep Med Rev 75, 101926 (2024). https://doi.org:10.1016/j.smrv.2024.101926
148    Lok, R., Zerbini, G., Gordijn, M. C. M., Beersma, D. G. M. & Hut, R. A. Gold, silver or bronze: circadian variation strongly affects performance in Olympic athletes. Sci Rep 10, 16088 (2020). https://doi.org:10.1038/s41598-020-72573-8
149    Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: An expanding universe. Cell 186, 243-278 (2023). https://doi.org:10.1016/j.cell.2022.11.001
150    Lopez-Otin, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L. & Kroemer, G. Meta-hallmarks of aging and cancer. Cell Metab 35, 12-35 (2023). https://doi.org:10.1016/j.cmet.2022.11.001
151    Lorber, C., Leleux, S., Stanewsky, R. & Lamaze, A. Light triggers a network switch between circadian morning and evening oscillators controlling behaviour during daily temperature cycles. PLoS Genet 18, e1010487 (2022). https://doi.org:10.1371/journal.pgen.1010487
152    Lou, F., Li, M., Luo, X. & Ren, Y. CLOCK 3111T/C Variant Correlates with Motor Fluctuation and Sleep Disorders in Chinese Patients with Parkinson's Disease. Parkinsons Dis 2018, 4670380 (2018). https://doi.org:10.1155/2018/4670380
153    Lou, F. et al. CLOCK rs1801260 Polymorphism is Associated with Susceptibility to Parkinson's Disease in a Chinese Population. Neurosci Bull 33, 734-736 (2017). https://doi.org:10.1007/s12264-017-0167-5
154    Luxton, J. J. et al. Telomere Length Dynamics and DNA Damage Responses Associated with Long-Duration Spaceflight. Cell Rep 33, 108457 (2020). https://doi.org:10.1016/j.celrep.2020.108457
155    Luxton, J. J. et al. Temporal Telomere and DNA Damage Responses in the Space Radiation Environment. Cell Rep 33, 108435 (2020). https://doi.org:10.1016/j.celrep.2020.108435
156    Ma, L., Ma, J. & Xu, K. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster. PLoS One 10, e0121600 (2015). https://doi.org:10.1371/journal.pone.0121600
157    Malhan, D., Schoenrock, B., Yalcin, M., Blottner, D. & Relogio, A. Circadian regulation in aging: Implications for spaceflight and life on earth. Aging Cell 22, e13935 (2023). https://doi.org:10.1111/acel.13935
158    Malhan, D., Yalcin, M., Schoenrock, B., Blottner, D. & Relogio, A. Skeletal muscle gene expression dysregulation in long-term spaceflights and aging is clock-dependent. NPJ Microgravity 9, 30 (2023). https://doi.org:10.1038/s41526-023-00273-4
159    Marcu, L. G. Developments on tumour site-specific chrono-oncology towards personalised treatment. Crit Rev Oncol Hematol 179, 103803 (2022). https://doi.org:10.1016/j.critrevonc.2022.103803
160    Maronde, E. et al. The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation. PLoS One 5, e11527 (2010). https://doi.org:10.1371/journal.pone.0011527
161    McDonald, J. T. et al. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 12 (2020). https://doi.org:10.3390/cancers12020381
162    Medeiros, C. A. et al. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson's disease. A randomized, double blind, placebo-controlled study. J Neurol 254, 459-464 (2007). https://doi.org:10.1007/s00415-006-0390-x
163    Meers, J. M. & Nowakowski, S. Sleep, premenstrual mood disorder, and women's health. Curr Opin Psychol 34, 43-49 (2020). https://doi.org:10.1016/j.copsyc.2019.09.003
164    Merkel, U. et al. Pharmacokinetics of oxaliplatin and non-hematological toxicity in metastatic gastrointestinal cancer patients treated with chronomodulated oxaliplatin, 5-FU and sodium folinate in a pilot investigation. Int J Clin Pharmacol Ther 44, 128-134 (2006). https://doi.org:10.5414/cpp44128
165    Michela, P., Velia, V., Aldo, P. & Ada, P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768, 71-76 (2015). https://doi.org:10.1016/j.ejphar.2015.10.030
166    Monk, T. H. Aging and space flight: findings from the University of Pittsburgh. J Gravit Physiol 6, P137-140 (1999).
167    Monk, T. H., Buysse, D. J., Billy, B. D., Kennedy, K. S. & Willrich, L. M. Sleep and circadian rhythms in four orbiting astronauts. J Biol Rhythms 13, 188-201 (1998). https://doi.org:10.1177/074873098129000039
168    Monk, T. H., Buysse, D. J. & Rose, L. R. Wrist actigraphic measures of sleep in space. Sleep 22, 948-954 (1999).
169    Mormont, M. C. et al. Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6, 3038-3045 (2000).
170    Mure, L. S. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol 12, 636330 (2021). https://doi.org:10.3389/fneur.2021.636330
171    Mure, L. S. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359 (2018). https://doi.org:10.1126/science.aao0318
172    Musiek, E. S., Xiong, D. D. & Holtzman, D. M. Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med 47, e148 (2015). https://doi.org:10.1038/emm.2014.121
173    Namazi, M., Sadeghi, R. & Behboodi Moghadam, Z. Social Determinants of Health in Menopause: An Integrative Review. Int J Womens Health 11, 637-647 (2019). https://doi.org:10.2147/IJWH.S228594
174    Nassan, M. & Videnovic, A. Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 18, 7-24 (2022). https://doi.org:10.1038/s41582-021-00577-7
175    Nassar, A., Abdelhamid, A., Ramsay, G. & Bekheit, M. Chronomodulated Administration of Chemotherapy in Advanced Colorectal Cancer: A Systematic Review and Meta-Analysis. Cureus 15, e36522 (2023). https://doi.org:10.7759/cureus.36522
176    Negoro, H. et al. Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms. J Clin Med 9 (2020). https://doi.org:10.3390/jcm9072263
177    Neves, A. R., Albuquerque, T., Quintela, T. & Costa, D. Circadian rhythm and disease: Relationship, new insights, and future perspectives. J Cell Physiol 237, 3239-3256 (2022). https://doi.org:10.1002/jcp.30815
178    Noh, J. M. et al. Comparison of acute skin reaction following morning versus late afternoon radiotherapy in patients with breast cancer who have undergone curative surgical resection. J Radiat Res 55, 553-558 (2014). https://doi.org:10.1093/jrr/rrt141
179    Norsk, P., Asmar, A., Damgaard, M. & Christensen, N. J. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol 593, 573-584 (2015). https://doi.org:10.1113/jphysiol.2014.284869
180    Nwanaji-Enwerem, J. C. et al. A Longitudinal Epigenetic Aging and Leukocyte Analysis of Simulated Space Travel: The Mars-500 Mission. Cell Rep 33, 108406 (2020). https://doi.org:10.1016/j.celrep.2020.108406
181    Obayashi, K. et al. Circadian activity rhythm in Parkinson's disease: findings from the PHASE study. Sleep Med 85, 8-14 (2021). https://doi.org:10.1016/j.sleep.2021.06.023
182    Olejniczak, I., Pilorz, V. & Oster, H. Circle(s) of Life: The Circadian Clock from Birth to Death. Biology (Basel) 12 (2023). https://doi.org:10.3390/biology12030383
183    Oliveira, M. A. B. et al. Taking biological rhythms into account: From study design to results reporting. Physiol Behav 273, 114387 (2024). https://doi.org:10.1016/j.physbeh.2023.114387
184    Otsuka, K. et al. Intrinsic cardiovascular autonomic regulatory system of astronauts exposed long-term to microgravity in space: observational study. NPJ Microgravity 1, 15018 (2015). https://doi.org:10.1038/npjmgrav.2015.18
185    Otsuka, K. et al. Anti-aging effects of long-term space missions, estimated by heart rate variability. Sci Rep 9, 8995 (2019). https://doi.org:10.1038/s41598-019-45387-6
186    Ozcivit Erkan, I. B. et al. An Evaluation of DNA Methylation Levels and Sleep in Relation to Hot Flashes: A Cross-Sectional Study. J Clin Med 13 (2024). https://doi.org:10.3390/jcm13123502
187    Palacios, S., Chedraui, P., Sanchez-Borrego, R., Coronado, P. & Nappi, R. E. Obesity and menopause. Gynecol Endocrinol 40, 2312885 (2024). https://doi.org:10.1080/09513590.2024.2312885
188    Pandi-Perumal, S. R. et al. Dim light melatonin onset (DLMO): a tool for the analysis of circadian phase in human sleep and chronobiological disorders. Prog Neuropsychopharmacol Biol Psychiatry 31, 1-11 (2007). https://doi.org:10.1016/j.pnpbp.2006.06.020
189    Papantoniou, K. et al. Rotating night shift work and colorectal cancer risk in the nurses' health studies. Int J Cancer 143, 2709-2717 (2018). https://doi.org:10.1002/ijc.31655
190    Pariollaud, M. & Lamia, K. A. Cancer in the Fourth Dimension: What Is the Impact of Circadian Disruption? Cancer Discov 10, 1455-1464 (2020). https://doi.org:10.1158/2159-8290.CD-20-0413
191    Perez-Medina-Carballo, R. et al. The circadian variation of sleep and alertness of postmenopausal women. Sleep 46 (2023). https://doi.org:10.1093/sleep/zsac272
192    Perhonen, M. A. et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol (1985) 91, 645-653 (2001). https://doi.org:10.1152/jappl.2001.91.2.645
193    Petkovic, M., Henis, M., Heese, O. & Relogio, A. Chronotherapy in Glioblastoma: state of the art and future perspectives. EBioMedicine 89, 104470 (2023). https://doi.org:10.1016/j.ebiom.2023.104470
194    Philpott, D. E., Bensch, K. G. & Miquel, J. Life span and fine structural changes in oxygen-poisoned Drosophila melanogaster. Aerosp Med 45, 283-289 (1974).
195    Pickel, L. & Sung, H. K. Feeding Rhythms and the Circadian Regulation of Metabolism. Front Nutr 7, 39 (2020). https://doi.org:10.3389/fnut.2020.00039
196    Printezi, M. I. et al. Toxicity and efficacy of chronomodulated chemotherapy: a systematic review. Lancet Oncol 23, e129-e143 (2022). https://doi.org:10.1016/S1470-2045(21)00639-2
197    Qin, Y. et al. Circadian clock genes as promising therapeutic targets for bone loss. Biomed Pharmacother 157, 114019 (2023). https://doi.org:10.1016/j.biopha.2022.114019
198    Rabinovich-Nikitin, I., Kirshenbaum, E. & Kirshenbaum, L. A. Autophagy, Clock Genes, and Cardiovascular Disease. Can J Cardiol 39, 1772-1780 (2023). https://doi.org:10.1016/j.cjca.2023.08.022
199    Rahn, D. A., 3rd et al. Gamma knife radiosurgery for brain metastasis of nonsmall cell lung cancer: is there a difference in outcome between morning and afternoon treatment? Cancer 117, 414-420 (2011). https://doi.org:10.1002/cncr.25423
200    Raupach, A. K. et al. Assessing the role of nocturnal core body temperature dysregulation as a biomarker of neurodegeneration. J Sleep Res 29, e12939 (2020). https://doi.org:10.1111/jsr.12939
201    Relogio, A. et al. Ras-mediated deregulation of the circadian clock in cancer. PLoS Genet 10, e1004338 (2014). https://doi.org:10.1371/journal.pgen.1004338
202    Rijo-Ferreira, F. & Takahashi, J. S. Genomics of circadian rhythms in health and disease. Genome Med 11, 82 (2019). https://doi.org:10.1186/s13073-019-0704-0
203    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015). https://doi.org:10.1093/nar/gkv007
204    Rittweger, J. et al. Sarcolab pilot study into skeletal muscle's adaptation to long-term spaceflight. NPJ Microgravity 4, 18 (2018). https://doi.org:10.1038/s41526-018-0052-1
205    Roberts, S. et al. Ageing in the musculoskeletal system. Acta Orthop 87, 15-25 (2016). https://doi.org:10.1080/17453674.2016.1244750
206    Robertson-Dixon, I., Murphy, M. J., Crewther, S. G. & Riddell, N. The Influence of Light Wavelength on Human HPA Axis Rhythms: A Systematic Review. Life (Basel) 13 (2023). https://doi.org:10.3390/life13101968
207    Roenneberg, T., Foster, R. G. & Klerman, E. B. The circadian system, sleep, and the health/disease balance: a conceptual review. J Sleep Res 31, e13621 (2022). https://doi.org:10.1111/jsr.13621
208    Roenneberg, T. & Merrow, M. The Circadian Clock and Human Health. Curr Biol 26, R432-443 (2016). https://doi.org:10.1016/j.cub.2016.04.011
209    Roenneberg, T., Pilz, L. K., Zerbini, G. & Winnebeck, E. C. Chronotype and Social Jetlag: A (Self-) Critical Review. Biology (Basel) 8 (2019). https://doi.org:10.3390/biology8030054
210    Roenneberg, T., Wirz-Justice, A. & Merrow, M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18, 80-90 (2003). https://doi.org:10.1177/0748730402239679
211    Roth, J. R., Varshney, S., de Moraes, R. C. M. & Melkani, G. C. Circadian-mediated regulation of cardiometabolic disorders and aging with time-restricted feeding. Obesity (Silver Spring) 31 Suppl 1, 40-49 (2023). https://doi.org:10.1002/oby.23664
212    Ruben, M. D. et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med 10 (2018). https://doi.org:10.1126/scitranslmed.aat8806
213    Samsa, W. E., Vasanji, A., Midura, R. J. & Kondratov, R. V. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 84, 194-203 (2016). https://doi.org:10.1016/j.bone.2016.01.006
214    Sancar, A. & Van Gelder, R. N. Clocks, cancer, and chronochemotherapy. Science 371 (2021). https://doi.org:10.1126/science.abb0738
215    Sanchez-Barcelo, E. J., Rueda, N., Mediavilla, M. D., Martinez-Cue, C. & Reiter, R. J. Clinical Uses of Melatonin in Neurological Diseases and Mental and Behavioural Disorders. Curr Med Chem 24, 3851-3878 (2017). https://doi.org:10.2174/0929867324666170718105557
216    Sardon Puig, L., Valera-Alberni, M., Canto, C. & Pillon, N. J. Circadian Rhythms and Mitochondria: Connecting the Dots. Front Genet 9, 452 (2018). https://doi.org:10.3389/fgene.2018.00452
217    Savard, J. et al. Breast cancer patients have progressively impaired sleep-wake activity rhythms during chemotherapy. Sleep 32, 1155-1160 (2009). https://doi.org:10.1093/sleep/32.9.1155
218    Schmiegelow, K. et al. Impact of morning versus evening schedule for oral methotrexate and 6-mercaptopurine on relapse risk for children with acute lymphoblastic leukemia. Nordic Society for Pediatric Hematology and Oncology (NOPHO). J Pediatr Hematol Oncol 19, 102-109 (1997). https://doi.org:10.1097/00043426-199703000-00002
219    Schroder, E. A. & Delisle, B. P. Time Restricted Feeding to the Light Cycle Dissociates Canonical Circadian Clocks and Physiological Rhythms in Heart Rate. Front Pharmacol 13, 910195 (2022). https://doi.org:10.3389/fphar.2022.910195
220    Shafie, M., Homayouni Rad, A., Mohammad-Alizadeh-Charandabi, S. & Mirghafourvand, M. The effect of probiotics on mood and sleep quality in postmenopausal women: A triple-blind randomized controlled trial. Clin Nutr ESPEN 50, 15-23 (2022). https://doi.org:10.1016/j.clnesp.2022.06.005
221    Shandhi, M. M. H., Wang, W. K. & Dunn, J. Taking the time for our bodies: How wearables can be used to assess circadian physiology. Cell Rep Methods 1, 100067 (2021). https://doi.org:10.1016/j.crmeth.2021.100067
222    Shao, X., Miyake, T., Inoue, Y., Hasegawa, E. & Doi, M. Temperature-Dependent Upregulation of Per2 Protein Expression Is Mediated by eIF2alpha Kinases PERK and PKR through PI3K Activation. Biol Pharm Bull 47, 600-605 (2024). https://doi.org:10.1248/bpb.b23-00739
223    Shen, B. et al. Effects of exercise on circadian rhythms in humans. Front Pharmacol 14, 1282357 (2023). https://doi.org:10.3389/fphar.2023.1282357
224    Shen, Y. et al. Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 12, 8 (2023). https://doi.org:10.1186/s40035-023-00340-6
225    Shkodina, A. D. et al. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 74, 101554 (2022). https://doi.org:10.1016/j.arr.2021.101554
226    Shuboni-Mulligan, D. D., Breton, G., Smart, D., Gilbert, M. & Armstrong, T. S. Radiation chronotherapy-clinical impact of treatment time-of-day: a systematic review. J Neurooncol 145, 415-427 (2019). https://doi.org:10.1007/s11060-019-03332-7
227    Simkin-Silverman, L. R., Wing, R. R., Boraz, M. A. & Kuller, L. H. Lifestyle intervention can prevent weight gain during menopause: results from a 5-year randomized clinical trial. Ann Behav Med 26, 212-220 (2003). https://doi.org:10.1207/S15324796ABM2603_06
228    Siraji, M. A., Spitschan, M., Kalavally, V. & Haque, S. Light exposure behaviors predict mood, memory and sleep quality. Sci Rep 13, 12425 (2023). https://doi.org:10.1038/s41598-023-39636-y
229    Sletten, T. L., Revell, V. L., Middleton, B., Lederle, K. A. & Skene, D. J. Age-related changes in acute and phase-advancing responses to monochromatic light. J Biol Rhythms 24, 73-84 (2009). https://doi.org:10.1177/0748730408328973
230    Snider, K. H., Sullivan, K. A. & Obrietan, K. Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plast 2018, 7292540 (2018). https://doi.org:10.1155/2018/7292540
231    Soares, N. M., Pereira, G. M., Altmann, V., de Almeida, R. M. M. & Rieder, C. R. M. Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson's disease: a systematic review. J Neural Transm (Vienna) 126, 219-232 (2019). https://doi.org:10.1007/s00702-018-1947-4
232    Spitschan, M. et al. Sex differences and sex bias in human circadian and sleep physiology research. Elife 11 (2022). https://doi.org:10.7554/eLife.65419
233    Stephenson, E. M., Usselmann, L. E. J., Tergaonkar, V., Virshup, D. M. & Dallmann, R. Cancer clocks in tumourigenesis: the p53 pathway and beyond. Endocr Relat Cancer 28, R95-R110 (2021). https://doi.org:10.1530/ERC-20-0475
234    Storch, K. F. et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130, 730-741 (2007). https://doi.org:10.1016/j.cell.2007.06.045
235    Straif, K. et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol 8, 1065-1066 (2007). https://doi.org:10.1016/S1470-2045(07)70373-X
236    Strollo, F. Adaptation of the human endocrine system to microgravity in the context of integrative physiology and ageing. Pflugers Arch 441, R85-90 (2000). https://doi.org:10.1007/s004240000331
237    Sulli, G., Lam, M. T. Y. & Panda, S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. Trends Cancer 5, 475-494 (2019). https://doi.org:10.1016/j.trecan.2019.07.002
238    Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71, 209-249 (2021). https://doi.org:10.3322/caac.21660
239    Suyoto, P. S., Pamungkas, N. P., de Vries, J. H. & Feskens, E. J. Associations between Variability in Between- and Within-Day Dietary Intake with Adiposity and Glucose Homeostasis in Adults: A Systematic Review. Adv Nutr 15, 100310 (2024). https://doi.org:10.1016/j.advnut.2024.100310
240    Swanton, C. et al. Embracing cancer complexity: Hallmarks of systemic disease. Cell 187, 1589-1616 (2024). https://doi.org:10.1016/j.cell.2024.02.009
241    Takahashi, H., Nakamura, A. & Shimizu, T. Simulated microgravity accelerates aging of human skeletal muscle myoblasts at the single cell level. Biochem Biophys Res Commun 578, 115-121 (2021). https://doi.org:10.1016/j.bbrc.2021.09.037
242    Talamanca, L., Gobet, C. & Naef, F. Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans. Science 379, 478-483 (2023). https://doi.org:10.1126/science.add0846
243    Teo, W., Newton, M. J. & McGuigan, M. R. Circadian rhythms in exercise performance: implications for hormonal and muscular adaptation. J Sports Sci Med 10, 600-606 (2011).
244    Thun, E., Bjorvatn, B., Flo, E., Harris, A. & Pallesen, S. Sleep, circadian rhythms, and athletic performance. Sleep Med Rev 23, 1-9 (2015). https://doi.org:10.1016/j.smrv.2014.11.003
245    Tian, Y. & Ming, J. The role of circadian rhythm in osteoporosis; a review. Front Cell Dev Biol 10, 960456 (2022). https://doi.org:10.3389/fcell.2022.960456
246    Tronstad, O., Flaws, D., Patterson, S., Holdsworth, R. & Fraser, J. F. Creating the ICU of the future: patient-centred design to optimise recovery. Crit Care 27, 402 (2023). https://doi.org:10.1186/s13054-023-04685-2
247    Urbano, T., Vinceti, M., Wise, L. A. & Filippini, T. Light at night and risk of breast cancer: a systematic review and dose-response meta-analysis. Int J Health Geogr 20, 44 (2021). https://doi.org:10.1186/s12942-021-00297-7
248    Vadnie, C. A. & McClung, C. A. Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017, 1504507 (2017). https://doi.org:10.1155/2017/1504507
249    Valdez, P. Homeostatic and circadian regulation of cognitive performance. Biological Rhythm Research 50, 85-93 (2018). https://doi.org:10.1080/09291016.2018.1491271
250    Vallee, A., Lecarpentier, Y., Guillevin, R. & Vallee, J. N. Circadian rhythms, Neuroinflammation and Oxidative Stress in the Story of Parkinson's Disease. Cells 9 (2020). https://doi.org:10.3390/cells9020314
251    Van Drunen, R. & Eckel-Mahan, K. Circadian rhythms as modulators of brain health during development and throughout aging. Front Neural Circuits 16, 1059229 (2022). https://doi.org:10.3389/fncir.2022.1059229
252    Verde, L. et al. Chronotype and Sleep Quality in Obesity: How Do They Change After Menopause? Curr Obes Rep 11, 254-262 (2022). https://doi.org:10.1007/s13679-022-00479-9
253    Videnovic, A. et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol 71, 463-469 (2014). https://doi.org:10.1001/jamaneurol.2013.6239
254    Videnovic, A. & Willis, G. L. Circadian system - A novel diagnostic and therapeutic target in Parkinson's disease? Mov Disord 31, 260-269 (2016). https://doi.org:10.1002/mds.26509
255    Walker, W. H., 2nd et al. Light Pollution and Cancer. Int J Mol Sci 21 (2020). https://doi.org:10.3390/ijms21249360
256    Wang, K. et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 7, 374 (2022). https://doi.org:10.1038/s41392-022-01211-8
257    Wang, L., Wang, C. & Choi, W. S. Use of Melatonin in Cancer Treatment: Where Are We? Int J Mol Sci 23 (2022). https://doi.org:10.3390/ijms23073779
258    Wang, Y. et al. Disruption of the Circadian Clock Alters Antioxidative Defense via the SIRT1-BMAL1 Pathway in 6-OHDA-Induced Models of Parkinson's Disease. Oxid Med Cell Longev 2018, 4854732 (2018). https://doi.org:10.1155/2018/4854732
259    WHO. Summary report on proceedings minutes and final acts of the International Health Conference held in New York from 19 June to 22 July 1946. Official Records of the World Health Organization (1948).
260    WHO. in Global Recommendations on Physical Activity for Health  WHO Guidelines Approved by the Guidelines Review Committee   (World Health Organization
Copyright © World Health Organization 2010., 2010).
261    Wilson, D. M., 3rd et al. Hallmarks of neurodegenerative diseases. Cell 186, 693-714 (2023). https://doi.org:10.1016/j.cell.2022.12.032
262    Wolff, C. A. & Esser, K. A. Exercise Timing and Circadian Rhythms. Curr Opin Physiol 10, 64-69 (2019). https://doi.org:10.1016/j.cophys.2019.04.020
263    Wong, N. A. & Bahmani, H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon 8, e10282 (2022). https://doi.org:10.1016/j.heliyon.2022.e10282
264    World Health, O.     (World Health Organization, Geneva, 2004).
265    Wu, J. Q., Li, P., Stavitsky Gilbert, K., Hu, K. & Cronin-Golomb, A. Circadian Rest-Activity Rhythms Predict Cognitive Function in Early Parkinson's Disease Independently of Sleep. Mov Disord Clin Pract 5, 614-619 (2018). https://doi.org:10.1002/mdc3.12692
266    Xie, Y. et al. New Insights Into the Circadian Rhythm and Its Related Diseases. Front Physiol 10, 682 (2019). https://doi.org:10.3389/fphys.2019.00682
267    Yadlapalli, S. et al. Circadian clock neurons constantly monitor environmental temperature to set sleep timing. Nature 555, 98-102 (2018). https://doi.org:10.1038/nature25740
268    Yalcin, M., El-Athman, R., Ouk, K., Priller, J. & Relogio, A. Analysis of the Circadian Regulation of Cancer Hallmarks by a Cross-Platform Study of Colorectal Cancer Time-Series Data Reveals an Association with Genes Involved in Huntington's Disease. Cancers (Basel) 12 (2020). https://doi.org:10.3390/cancers12040963
269    Yalcin, M. et al. A Computational Analysis in a Cohort of Parkinson's Disease Patients and Clock-Modified Colorectal Cancer Cells Reveals Common Expression Alterations in Clock-Regulated Genes. Cancers (Basel) 13 (2021). https://doi.org:10.3390/cancers13235978
270    Yalcin, M. et al. It's About Time: The Circadian Network as Time-Keeper for Cognitive Functioning, Locomotor Activity and Mental Health. Front Physiol 13, 873237 (2022). https://doi.org:10.3389/fphys.2022.873237
271    Yamanaka, Y. Basic concepts and unique features of human circadian rhythms: implications for human health. Nutr Rev 78, 91-96 (2020). https://doi.org:10.1093/nutrit/nuaa072
272    Yetish, G. et al. Natural sleep and its seasonal variations in three pre-industrial societies. Curr Biol 25, 2862-2868 (2015). https://doi.org:10.1016/j.cub.2015.09.046
273    Yoshizawa, J. M. et al. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev 26, 781-791 (2013). https://doi.org:10.1128/CMR.00021-13
274    Young, M. E., Razeghi, P., Cedars, A. M., Guthrie, P. H. & Taegtmeyer, H. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res 89, 1199-1208 (2001). https://doi.org:10.1161/hh2401.100741
275    Zhang, H., Liang, J. & Chen, N. Do not neglect the role of circadian rhythm in muscle atrophy. Ageing Res Rev 63, 101155 (2020). https://doi.org:10.1016/j.arr.2020.101155
276    Zhang, P. X. et al. A randomized phase II trial of induction chemotherapy followed by cisplatin chronotherapy versus constant rate delivery combined with radiotherapy. Chronobiol Int 35, 240-248 (2018). https://doi.org:10.1080/07420528.2017.1397684
277    Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111, 16219-16224 (2014). https://doi.org:10.1073/pnas.1408886111
278    Zhang, S. et al. Signalling entrains the peripheral circadian clock. Cell Signal 69, 109433 (2020). https://doi.org:10.1016/j.cellsig.2019.109433
279    Zhang, Y. et al. Dosing time dependent in vitro pharmacodynamics of Everolimus despite a defective circadian clock. Cell Cycle 17, 33-42 (2018). https://doi.org:10.1080/15384101.2017.1387695
280    Zhang, Y. & Papantoniou, K. Night shift work and its carcinogenicity. Lancet Oncol 20, e550 (2019). https://doi.org:10.1016/S1470-2045(19)30578-9
281    Zhao, M., Sun, M., Zhao, R., Chen, P. & Li, S. Effects of exercise on sleep in perimenopausal women: A meta-analysis of randomized controlled trials. Explore (NY) 19, 636-645 (2023). https://doi.org:10.1016/j.explore.2023.02.001
282    Zhou, L. et al. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 15, 21 (2022). https://doi.org:10.1186/s13045-022-01238-y
283    Zhu, Y. et al. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 81, 101725 (2022). https://doi.org:10.1016/j.arr.2022.101725
284    Zuzuarregui, J. R. P. & During, E. H. Sleep Issues in Parkinson's Disease and Their Management. Neurotherapeutics 17, 1480-1494 (2020). https://doi.org:10.1007/s13311-020-00938-y